知识图谱能否让人工智能技术打破认知天花板?

发布时间: 2021-01-08 11:00:00   行业资讯   作者:猎维科技

导读: 知识图谱作为人工智能的重要研究领域,其核心理念可追溯到第一次人工智能浪潮。

知识图谱作为人工智能的重要研究领域,其核心理念可追溯到第一次人工智能浪潮。但直至进入人工智能下半场,当具备能理解、会思考、可解释等特征的认知智能成为突破自身天花板的关键,知识图谱才得以蓬勃发展。近年来,知识图谱技术热度不减,作为实现认知智能的核心驱动力,已广泛应用在金融、电商、医疗、政务等诸多领域。

知识图谱能否让人工智能技术打破认知天花板?

从知识图谱的产业链结构来看,知识图谱上游产业涉及数据采集标注、云服务、硬件资源、数据库等数据和技术支撑,第三方数据服务商通过数据采集、标注旨为构建知识图谱提供规范、丰富、持续更新的原始数据资源池。

中游从事知识图谱的设计与构建,以应用场景为导向,设计知识图谱的表达方式和粒度,包括提供用于知识图谱分析、应用的各类套件工具及解决方案,并通过知识抽娶知识融合、知识补全与推理、知识检索与分析等环节构建完成。

下游知识图谱的应用正由大规模、简单场景,向小规模、复杂场景转变。智能搜索、智能推荐、智能出行等大规模、简单知识应用、单一应用模式的场景逐渐成熟,知识图谱开始在金融、能源、工业、医疗等数据资源有限、知识深度应用的复杂场景发挥关键作用。

人工智能的重要领域

技术挑战与发展趋势

当前,知识图谱的主要技术挑战在于缺失多元知识来源和表示形式带来的推理能力不足,以及欠缺具备深度知识的行业知识图谱快速工业化能力。关于未来发展趋势,一方面,伴随应用场景不断深入专业领域,知识图谱将从知识服务延伸至深层决策和预测服务,成为构建商业决策类、预测类应用的底层关键技术;另一方面,场景驱动下的知识图谱技术生态将呈现系统化发展趋势,与知识表示、自然语言处理、机器学习、图数据库、多媒体处理等关联技术相互融合,深度赋能应用场景。